Scientific interests
(click on Papers to see publications)
Scientific interests
(click on Papers to see publications)
Local moment magnetic systems
1. “On the self-consistent spin-wave theory of frustrated Heisenberg antiferromagnets”, V.Yu.Irkhin, A.A.Katanin, M.I.Katsnelson, J. Phys. Cond. Matt., 4, 5227 (1992).
2. “On the self-consistent spin-wave theory of thin ferromagnetic films”, V.Yu.Irkhin, A.A.Katanin, M.I.Katsnelson, J.Magn.Magn.Mater. 164, 66 (1996).
3. “1/N Expansion for Critical Exponents of Magnetic Phase Transitions in CP(N-1) Model at 2<d<4”, V.Yu.Irkhin, A.A.Katanin, M.I. Katsnelson, Phys. Rev. B54, 11953 (1996).
4. “Critical behavior and the Neel temperature of quantum quasi-two-dimensional Heisenberg antiferromagnets”, V.Yu.Irkhin, A.A.Katanin, Phys.Rev. B55, 12318 (1997)
5. “Thermodynamics of isotropic and anisotropic layered magnets: renormalization group approach and 1/N expansion”, V.Yu.Irkhin, A.A.Katanin, Phys.Rev. B57, 379 (1998)
6. “The Kosterlitz-Thouless and magnetic transition temperatures in layered magnets with a weak easy-plane anisotropy”, V.Yu.Irkhin, A.A.Katanin, Phys.Rev. B60, 2990 (1999)
7. «Self-consistent spin-wave theory of layered Heisenberg magnets», V. Yu. Irkhin, A. A. Katanin, and M. I. Katsnelson, Phys. Rev. B 60, 1082 (1999)
8. “Calculation of Neel temperature for S=1/2 quasi-one-dimensional Heisenberg antiferromagnets”, V.Yu.Irkhin, A.A.Katanin, Phys.Rev. B61, 6757 (2000)
9. “Spin Excitations in La2CuO4: Consistent Description by Inclusion of Ring-Exchange”, A.A.Katanin and A.P.Kampf, Phys. Rev. B 66, 100403 (2002)
10. “Theoretical analysis of magnetic Raman scattering in La2CuO4: Two-magnon intensity with the inclusion of ring exchange", A.A.Katanin and A.P. Kampf, Phys. Rev. B 67, 100404 (2003)
11. «Magnetic order and spin fluctuations in low dimensional systems A. A. Katanin and V. Yu. Irkhin, Sov. Physics – Uspekhii 50, 613 (2007).
12. «Spin stiffness of anisotropic Heisenberg model on square lattice and possible mechanism for pinning of the electronic liquid crystal direction in YBCO», T. Pardini, R. R. P. Singh, A. A. Katanin, and O. Sushkov, Phys. Rev. B 78, 024439 (2008).
13. «Strong short-range magnetic order in a frustrated FCC lattice and its possible role in the iron structural transformation», A. N. Ignatenko, A.A. Katanin, V.Yu.Irkhin, JETP Letters 87, 615 (2008)
14. «The Neel temperature and sublattice magnetization for the stacked triangular-lattice antiferromagnet with a weak interlayer coupling», A. N. Ignatenko, V. Yu. Irkhin, A. A. Katanin, Solid State Phenomena, 152, 257 (2009).
15. «Universal properties of frustrated spin systems: 1/N-expansion and renormalization group approaches», A. N. Ignatenko, V. Yu. Irkhin, A. A. Katanin, Nuclear Physics B 814, 439 (2009).
16. «Quasielastic neutron scattering from two dimensional antiferromagnets at a finite temperature», A. A. Katanin and O. P. Sushkov, Phys. Rev. B 83, 094426 (2010).
17. «Longitudinal and transverse static spin fluctuations in layered ferro- and antiferromagnets », A. A. Katanin, Phys. Rev. B 86, 224416 (2012)
18. Anomalous temperature and field behaviors of magnetization in cubic lattice frustrated ferromagnets, Solid State Phenom., 233-234, 3 (2015)
19. Strong fluctuations near the frustration point in cubic lattice ferromagnets with localized moments, JETP Letters 97, 209 (2013)
20. Universal Berezinskii-Kosterlitz-Thouless dynamic scaling in the intermediate timerange in frustrated Heisenberg antiferromagnets on triangular lattice, I. S. Popov, P. V. Prudnikov, A. N. Ignatenko, A. A. Katanin, Phys. Rev. B 95, 134437 (2017)
21. The non-analytic momentum dependence of spin susceptibility of Heisenberg magnets in paramagnetic phase and its effect on critical exponents A. A. Katanin Phys. Rev. B 103, 054415 (2021)
Itinerant magnetism and non-Fermi liquid behavior
1. Antiferromagnetic and spin spiral correlations in the doped two-dimensional Hubbard model: gauge symmetry, Ward identities, and dynamical mean-field theory analysis, I. A. Goremykin, A. A. Katanin, arXiv:2405.04277.
2. Commensurate and incommensurate magnetic order in the doped two-dimensional Hubbard model: dynamical mean-field theory analysis, I. A. Goremykin, A. A. Katanin, Phys. Rev. B 107, 245104 (2023).
3. Ferromagnetic instability in itinerant fcc lattice electron systems with higher order van Hove singularities: Functional renormalization group study, P. A. Igoshev, A. A. Katanin, Phys. Rev. B 107, 115105 (2023).
4. Kohn anomalies in momentum dependence of magnetic susceptibility of some three-dimensional systems, A. A. Stepanenko, D. O. Volkova, P. A. Igoshev, A. A. Katanin, Journ. Exp. Theor. Phys. 125, 879 (2017).
5. Magnetic fluctuations and self-energy effects in two-dimensional itinerant systems with a van Hove singularity in the electronic spectrum, P. A. Igoshev, V. Yu. Irkhin, and A. A. Katanin, Phys. Rev. B 83, 245118 (2011).
6. «Ferromagnetic instability and finite-temperature properties of two-dimensional electron systems with van Hove singularities», A. A. Katanin, H. Yamase, and V. Yu. Irkhin, J. Phys. Soc. Jpn. 80, 063702 (2011).
7. «The quantum critical behavior of antiferromagnetic itinerant systems with van Hove singularities of electronic spectrum», A. A. Katanin, Phys. Rev. B 81, 165118 (2010).
8. Incommensurate magnetic order and phase separation in the two-dimensional Hubbard model with nearest- and next-nearest-neighbor hopping», P. A. Igoshev, M. A. Timirgazin, A. A. Katanin, A. K. Arzhnikov, and V. Yu. Irkhin, Phys. Rev. B 81, 094407 (2010).
9. «Spin fluctuations and ferromagnetic order in two-dimensional itinerant systems with Van Hove singularities», P. A. Igoshev, A. A. Katanin, H. Yamase, V. Yu. Irkhin, Journ. Magn. Magn. Mater. 321, 899 (2009).
10. «Magnetic fluctuations and ferromagnetism formation in two-dimensional systems with van Hove singularities», P. Igoshev, A. A. Katanin, and V. Yu. Irkhin, Sov. Phys. JETP 105, 1043 (2007).
11. «Van Hove singularity and spontaneous Fermi surface symmetry breaking in Sr3Ru2O7», H. Yamase and A. A. Katanin, J. Phys. Soc. Jpn. 76, 073706 (2007).
12. “Renormalization group analysis of magnetic and superconducting instabilities near van Hove band fillings”, A.A.Katanin and A.P. Kampf, Phys. Rev. B 68, 195101 (2003)
13. “Competing orders in the extended Hubbard model at van Hove fillings”, A.P. Kampf and A.A.Katanin, Phys. Rev. B 67, 125104 (2003)
14. “Effect of Van-Hove singularities on the magnetism and superconductivity of 2D systems”, V.Yu.Irkhin, A.A.Katanin and M.I.Katsnelson, Phys. Rev.B64, 165107 (2001)
Superconductivity:
1. «Antiferromagnetic fluctuations, symmetry and shape of the gap function in the electron-doped superconductors: the functional renormalization-group analysis», A. A. Katanin, Phys. Rev. B 74, 174523 (2006).
2. «Order parameter symmetries for magnetic and superconducting instabilities: Bethe-Salpeter analysis of functional renormalization-group solutions», A. A. Katanin and A. P. Kampf, Phys. Rev. B 72, 205128 (2005).
Electronic properties of itinerant systems and non-quasiparticle effects:
1. «Comparing pertinent effects of antiferromagnetic fluctuations in the two and three dimensional Hubbard model», A. A. Katanin, A. Toschi, K. Held, Phys. Rev. B 80, 075104 (2009).
2. «Spectral functions of 2D systems with coupling of electrons to collective or localized spin degrees of freedom», A. A. Katanin and V. Yu. Irkhin, Phys. Rev. B 77, 115129 (2008).
3. «Electronic self-energy and triplet pairing fluctuations in the vicinity of a ferromagnetic instability in 2D systems: the quasistatic approach», A. A. Katanin, Phys. Rev. B 72, 035111 (2005).
4. «Anomalous self-energy and Fermi surface quasi-splitting in the vicinity of a ferromagnetic instability», A. A. Katanin, A. P. Kampf, and V. Yu. Irkhin, Phys. Rev. B 71, 085105 (2005).
5. “Quasiparticle Anisotropy and Pseudogap Formation from the Weak-Coupling Renormalization Group Point of View”, A.A. Katanin and A.P. Kampf, Phys. Rev. Lett. 93, 106406 (2004)
6. “On the violation of the Fermi-liquid picture in two-dimensional systems owing to the Van-Hove singularities”, V.Yu.Irkhin and A.A.Katanin, cond-mat/0105564
7. “Robustness of the Van-Hove scenario for high-Tc superconductors”, V.Yu.Irkhin, A.A.Katanin and M.I. Katsnelson, Phys. Rev. Lett. 89, 076401 (2002)
Combination of first-principle and model description of magnetism
1. «Orbital selective local moment formation in iron: first principle route to an effective model», A. A. Katanin, A. I. Poteryaev, A. V. Efremov, A. O. Shorikov, S. L. Skornyakov, M. A. Korotin, V. I. Anisimov, Phys. Rev. B 81, 045117 (2010).
2. «Linear-temperature dependence of static magnetic susceptibility in LaFeAsO from dynamical mean-field theory», S.L. Skornyakov, A.A. Katanin, V.I. Anisimov, Phys. Rev. Lett. 106, 047007 (2011).
3. «Competing magnetic fluctuations in gamma-iron due to peculiarities of its electronic structure», P. A. Igoshev, A. V. Efremov, A. I. Poteryaev, A. A. Katanin, V. I. Anisimov, Phys. Rev. B 88, 155120 (2013).
4. Magnetic exchange in a-iron from the ab initio calculations in the paramagnetic phase, P. A. Igoshev, A. V. Efremov, A. A. Katanin, Phys. Rev. B. 91, 195123 (2015).
5. Nonlocal correlations in the vicinity of the α-γ phase transition in iron within a DMFT plus spin-fermion model approach, A. A. Katanin, A. S. Belozerov, V. I. Anisimov, Phys. Rev. B 94, 161117 (2016).
6. Local magnetic moments in iron and nickel at ambient and Earth's core conditions, A. Hausoel, M. Karolak, E. Sasioglu, A. Lichtenstein, K. Held, A. Katanin, A. Toschi, G. Sangiovanni, Nature Comm. 8, 16062 (2017).
7. Momentum-dependent susceptibilities and magnetic exchange in bcc iron from supercell DMFT calculations, A. S. Belozerov, A. A. Katanin, V. I. Anisimov, Phys. Rev. B 96, 075108 (2017).
8. Magnetic exchange and susceptibilities in fcc iron: A supercell dynamical mean-field theory study, A. A. Katanin, A. S. Belozerov, V. I. Anisimov, Phys. Rev. B 98, 045138 (2018).
9. Effect of density of states peculiarities on Hund's metal behavior, A. S. Belozerov, A. A. Katanin, V. I. Anisimov, Phys. Rev. B 97, 115141 (2018).
10. Magnetic fluctuations and superconducting pairing in e-iron, A. S. Belozerov, A. A. Katanin, V. Yu. Irkhin, V. I. Anisimov, Phys. Rev. B 101, 155126 (2020)
11. Electronic correlations, spectral and magnetic properties of ZrZn2 S. L. Skornyakov, V. S. Protsenko, V. I. Anisimov, A. A. Katanin, Phys. Rev. B 102, 085101 (2020)
12. Electronic correlation effects and local magnetic moments in L10 phase of FeNi A. S. Belozerov, A. A. Katanin, V. I. Anisimov J. Phys.: Condens. Matter 32, 385601 (2020)
13. Itinerant magnetism of chromium under pressure: a DFT+DMFT study A. S. Belozerov, A. A. Katanin, V. I. Anisimov, J. Phys.: Condens. Matter 33 385601 (2021).
14. Coulomb correlations and magnetic properties of L10 FeCo: a DFT+DMFT study A. S. Belozerov, A. A. Katanin, V. I. Anisimov, Phys. Rev. Materials 6, 055004 (2022).
15. Transition from Pauli paramagnetism to Curie-Weiss behaviour in vanadium, A. S. Belozerov, A. A. Katanin, V. I. Anisimov Phys. Rev. B 107, 035116, (2023).
16. Exchange interactions in iron and nickel: DFT+DMFT study in paramagnetic phase, A. A. Katanin, A. S. Belozerov, A. I. Lichtenstein, M. I. Katsnelson, Phys. Rev. B 107, 235118 (2023).
17. Looking at the magnetic properties of half metal from the paramagnetic phase: DFT+DMFT study of exchange interactions in CrO2 , A. A. Katanin, arXiv:2309.06892
18. DFT+DMFT study of exchange interactions in cobalt and their implications for the competition of hcp and fcc phases A. A. Katanin, Phys. Rev. B 108, 235170 (2023).
19. MXene Fe2C as a promising candidate for the 2D XY ferromagnet, E. M. Agapov, I. A. Kruglov, A. A. Katanin, 2D Mater. 11, 025001 (2024)
Quantum dots with magnetic correlations
1. Interaction induced local moments in parallel quantum dots within the functional renormalization group approach V. S. Protsenko, A. A. Katanin, Phys. Rev. B 94, 195148 (2016)
2. Functional renormalization group study of parallel double quantum dots: Effects of asymmetric dot-lead couplings, Phys. Rev. B 95, 245129 (2017)
3. Local magnetic moments and electronic transport in closed loop quantum dot systems: a case of quadruple quantum dot ring at and away from equilibrium, V. S. Protsenko, A. A. Katanin Phys. Rev. B 99, 165114 (2019)
Graphene and graphene nanoflakes
1. Effect of weak impurities on electronic properties of graphene: functional renormalization-group analysis, A. Katanin, Phys. Rev. B 88, 241401(R) (2013)
2. The effect of vertex corrections on the possibility of chiral symmetry breaking, induced by long-range Coulomb repulsion in graphene, Phys. Rev. B 93, 035132 (2016)
3. Magnetic, charge, and transport properties of graphene nanoflakes. V. S. Protsenko, A. A. Katanin Phys. Rev. B 104, 245139 (2021)
4. Generalized dynamical mean-field theory of two-subalttice systems with non-local interactions and its application to study charge and spin correlations in graphene. A. A. Katanin, Phys. Rev. B 104, 245142 (2021)
5. А. А. Катанин, В. С. Проценко “Зарядовые и спиновые корреляции в графене: ренормгрупповой и E-DMFT анализ”, XXIV Уральская международная зимняя школа по физике полупроводников, Программа и Тезисы докладов, Екатеринбург, Институт физики металлов им. М.Н. Михеева УрО РАН, 2022., с. 258, http://uiwsps.imp.uran.ru/sites/default/files/docs/Сборник_UIWSPS-2022.pdf
6. Charge and spin correlations in insulating and incoherent metal states of twisted bilayer graphene, A. A. Katanin, Phys. Rev. B 106, 115147 (2022).
7. Effect of vacancies on magnetic correlations and conductance in graphene nanoflakes with realistic Coulomb interaction V. S. Protsenko, A. A. Katanin Phys. Rev. B 108, 245117 (2023).
Local magnetic moments near Mott transition
1. The Bethe-Salpeter equation at the critical end-point of the Mott transition, Erik G. C. P. van Loon, Friedrich Krien, Andrey A. Katanin, Phys. Rev. Lett. 125, 136402 (2020).
2. Local magnetic moment formation and Kondo screening in the half filled two dimensional single band Hubbard model, T. B. Mazitov, A. A. Katanin Phys. Rev. B 105, L081111 (2022).
3. The effect of local magnetic moments on spectral properties and resistivity near the interaction- and doping induced Mott transitions, T. B. Mazitov, A. A. Katanin, Phys. Rev. B 106, 205148 (2022).